

St Patrick's Catholic Primary School, Walthamstow, London

Power Maths White Rose Edition Calculation Policy, UPPER KS2

KEY STAGE 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.

Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

Addition and subtraction: Children build on their column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage.

Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods.

Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.

Multiplication and division: Building on their understanding, children develop methods to multiply up to 4-digit numbers by single-digit and 2-digit numbers.

Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10, 100 and 1,000.

Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions.

Multiplication and division of decimals are also introduced and refined in Year 6.

Fractions: Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them.

Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic.

Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: 50%, 25%, 10% and 1%.

	Year 5			
	Concrete	Pictorial	Abstract	
Year 5 Addition				
Column addition with whole numbers	Use place value equipment to represent additions. TTh Th H T O Add a row of counters onto the place value grid to show 15,735 + 4,012	Represent additions, using place value equipment on a place value grid alongside written methods. The place value grid alongside written methods. I need to exchange 10 tens for a 100.	Use column addition, including exchanges. TTH TH H T O	
Representing additions		Bar models represent addition of two or more numbers in the context of problem solving.	Use approximation to check whether answers are reasonable. TTh Th H T O 2 3 4 0 5 + 7 8 9 2 2 0 2 9 7 1 will use 23,000 + 8,000 to check.	

Adding tenths	Link measure with addition of decimals. Two lengths of fencing are 0.6 m and 0.2 m. How long are they when added together? 0.6 m 0.2 m	Jen £2,600 £1,450 ? £4,050 Th H T O 2 6 0 0	Understand the link with adding fractions. $\frac{6}{10} + \frac{2}{10} = \frac{8}{10}$ $6 \text{ tenths} + 2 \text{ tenths} = 8 \text{ tenths}$ $0.6 + 0.2 = 0.8$
Adding decimals using column addition	Use place value equipment to represent additions. Show 0.23 + 0.45 using place value counters.	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary.	Add using a column method, ensuring that children understand the link with place value. O Tth Hth O 2 3 + 0 4 5 O 6 8 Include exchange where required, alongside an understanding of place value.

		Include examples where the numbers of decimal places are different. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{0 \cdot \text{Tth Hth}}{0 \cdot 9 \cdot 2}$ $+ \frac{0 \cdot 3 \cdot 3}{1 \cdot 2 \cdot 5}$ Include additions where the numbers of decimal places are different. $3.4 + 0.65 = ?$ $\frac{0 \cdot \text{Tth Hth}}{3 \cdot 4 \cdot 0}$ $+ \frac{0 \cdot 6 \cdot 5}{0 \cdot 1}$
Year 5 Subtraction			
Column subtraction with whole numbers	Use place value equipment to understand where exchanges are required. 2,250 – 1,070 = ?	Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required. 15,735 - 2,582 = 13,153 Now subtract the IOs. Exchange I hundred for IO tens. Subtract the IOOs, I,000s and IO,000s.	Use column subtraction methods with exchange where required. TTh Th H T O 5 8 2 5 9 7 - 1 8 0 3 4 4 4 5 6 3 62,597 - 18,034 = 44,563

	TTh Th H T O I 5 7 3 5 - 2 5 8 2 TTh Th H T O I 5 6 7 3 5 - 2 5 8 2 TTh Th H T O I 5 6 7 3 5 - 2 5 8 2 TTh Th H T O I 5 6 7 3 5 - 2 5 8 2 I 3 I 5 3	
Checking strategies and representing subtractions	Bar models represent subtractions in problem contexts, including 'find the difference'. Athletics Stadium 75,450 Hockey Centre 42,300 Velodrome 15,735 ?	Children can explain the mistake made when the columns have not been ordered correctly. Use approximation to check calculations. Bella's working Correct method TTh Th H T O 1 7 8 7 7 + 4 0 1 2 5 7 9 9 7 1 1 8 8 9

			I calculated 18,000 + 4,000 mentally to check my subtraction.
Choosing efficient methods			To subtract two large numbers that are close, children find the difference by counting on.
			2,002 - 1,995 = ?
			1,995 2,000 2,002
			Use addition to check subtractions. I calculated 7,546 - 2,355 = 5,191. I will check using the inverse.
Subtracting decimals	Explore complements to a whole number by working in the context of length. $ \begin{array}{c c} \hline 0.49 \text{ m} \end{array} $ $ \begin{array}{c c} \hline 1 \text{ m} - \bigcirc \text{ m} = \bigcirc \text{ m} \end{array} $ $ 1 - 0.49 = ? $	Use a place value grid to represent the stages of column subtraction, including exchanges where required. 5.74 - 2.25 = ?	I will check using the inverse. Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places. 3⋅921 - 3⋅75 = ? O · Tth Hth Thth 3 · 9 2 I - 3 · 7 5 0 .

		O Tth Hth O Tth Hth 5 · 7 4 - 2 · 2 5
		Exchange I tenth for IO hundredths.
		O Tth Hth O · Tth Hth 5 · 67 · 14 - 2 · 2 · 5 ·
		Now subtract the 5 hundredths.
		0
		Now subtract the 2 tenths, then the 2 ones.
		0 • Tth Hth 5 • 57 14 - 2 · 2 · 5 3 · 4 · q
Year 5 Multiplication		
Understanding factors	Use cubes or counters to explore the meaning of 'square numbers'.	Use images to explore examples and non-examples of square numbers. Understand the pattern of square numbers in the multiplication tables.
	25 is a square number because it is made from 5 rows of 5.	Use a multiplication grid to circle each square number. Can children spot a pattern?
	Use cubes to explore cube numbers.	$8 \times 8 = 64$ $8^2 = 64$

Power Maths White Rose Edition Calculation Policy

	8 is a cube number.	12 is not a square number, because you cannot multiply a whole number by itself to make 12.	
Multiplying by 10, 100 and 1,000	Use place value equipment to multiply by 10, 100 and 1,000 by unitising. 4 × 1 = 4 ones = 4 4 × 10 = 4 tens = 40 4 × 100 = 4 hundreds = 400	Understand the effect of repeated multiplication by 10. $7 \times 10 = 70$ $7 \times 100 = 7,000$ $7 \times 1,000 = 70,000$	Understand how exchange relates to the digits when multiplying by 10, 100 and 1,000. H T O I 7 $17 \times 10 = 170$ $17 \times 100 = 17 \times 10 \times 10 = 1,700$ $17 \times 1,000 = 17 \times 10 \times 10 \times 10 = 17,000$
Multiplying by multiples of 10, 100 and 1,000	Use place value equipment to explore multiplying by unitising.	Use place value equipment to represent how to multiply by multiples of 10, 100 and 1,000.	Use known facts and unitising to multiply. $5 \times 4 = 20$ $5 \times 40 = 200$ $5 \times 400 = 2,000$ $5 \times 4,000 = 20,000$

	5 groups of 3 ones is 15 ones. 5 groups of 3 tens is 15 tens. So, I know that 5 groups of 3 thousands would be 15 thousands.	$4 \times 3 = 12$ $4 \times 300 = 1,200$	5,000 × 4 = 20,000
Multiplying up to 4-digit numbers by a single digit	Explore how to use partitioning to multiply efficiently. $8 \times 17 = ?$ $8 \times 10 = 80$ $8 \times 10 = 80$ $8 \times 7 = 56$ $80 + 56 = 136$ $80, 8 \times 17 = 136$	Represent multiplications using place value equipment and add the 1s, then 10s, then 100s, then 100s, then 1,000s. H T O O O O O O O O O O O O O O O O O	Use an area model and then add the parts. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Multiplying 2- digit numbers by 2-digit numbers	Partition one number into 10s and 1s, then add the parts. 23 x 15 = ?	Use an area model and add the parts. 28 x 15 = ?	Use column multiplication, ensuring understanding of place value at each stage.

Madainhaineann	$10 \times 15 = 150$ $10 \times 15 = 150$ $10 \times 15 = 150$ $\frac{H T O}{1 5 0}$ $1 5 0$ $2 3 4 5$ $1 5 0$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Multiplying up to 4-digits by 2-digits		Use the area model then add the parts. 100	Use column multiplication, ensuring understanding of place value at each stage. 1

Multiplying decimals by 10, 100 and 1,000	Use place value equipment to explore and understand the exchange of 10 tenths, 10 hundredths or 10 thousandths.	Represent multiplication by 10 as exchange on a place value grid.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Year 5 Division		0·14 x 10 = 1·4	

Understanding factors and prime numbers

Use equipment to explore the factors of a given number.

 $24 \div 3 = 8$

 $24 \div 8 = 3$

8 and 3 are factors of 24 because they divide 24 exactly.

 $24 \div 5 = 4$ remainder 4.

5 is not a factor of 24 because there is a remainder.

Understand that prime numbers are numbers with exactly two factors.

$$13 \div 1 = 13$$

 $13 \div 2 = 6 r 1$

$$13 \div 4 = 4 r 1$$

1 and 13 are the only factors of 13. 13 is a prime number. Understand how to recognise prime and composite numbers.

I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder.

I know that 33 is not a prime number as it can be divided by 1, 3, 11 and 33.

I know that 1 is not a prime number, as it has only 1 factor.

Understanding inverse operations and the link with multiplication, grouping and sharing

Use equipment to group and share and to explore the calculations that are present.

I have 28 counters.

I made 7 groups of 4. There are 28 in total.

I have 28 in total. I shared them equally into 7 groups. There are 4 in each group.

I have 28 in total. I made groups of 4. There are 7 equal groups.

Represent multiplicative relationships and explore the families of division facts.

$$60 \div 4 = 15$$

 $60 \div 15 = 4$

Represent the different multiplicative relationships to solve problems requiring inverse operations.

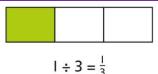
Understand missing number problems for division calculations and know how to solve them using inverse operations.

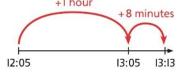
$$22 \div ? = 2$$

$$22 \div 2 = ?$$

			? ÷ 2 = 22 ? ÷ 22 = 2
Dividing whole numbers by 10, 100 and	Use place value equipment to support unitising for division.	Use a bar model to support dividing by unitising.	Understand how and why the digits change on a place value grid when dividing by 10, 100 or 1,000.
1,000	4,000 ÷ 1,000	380 ÷ 10 = 38	1.00 01 1,0001
	4,000 1,000 x	7 ? ? ? ? ? ? ? ? ?	Th H T O O O
	4,000 is 4 thousands. $4 \times 1,000 = 4,000$	380 10 ×	$3,200 \div 100 = ?$ 3,200 is 3 thousands and 2 hundreds. $200 \div 100 = 2$ $3,000 \div 100 = 30$
	So, 4,000 ÷ 1,000 = 4	380 is 38 tens. 38 × 10 = 380 10 × 38 = 380 So, 380 ÷ 10 = 38	3,200 ÷ 100 = 32 So, the digits will move two places to the right.
Dividing by multiples of 10, 100 and 1,000	Use place value equipment to represent known facts and unitising.	Represent related facts with place value equipment when dividing by unitising.	Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check.
			$3,000 \div 5 = 600$ $3,000 \div 50 = 60$ $3,000 \div 500 = 6$
	15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3 = 5$	180 is 18 tens.	$5 \times 600 = 3,000$ $50 \times 60 = 3,000$ $500 \times 6 = 3,000$
	15 tens put into groups of 3 tens. There are 5 groups.	18 tens divided into groups of 3 tens. There are 6 groups.	

	150 ÷ 30 = 5	180 ÷ 30 = 6	
		1 1 1 1 1 1 100 100 100 100 1 1 1 1 1 1	
		12 ones divided into groups of 4. There are 3 groups.	
		12 hundreds divided into groups of 4 hundreds. There are 3 groups.	
		1200 ÷ 400 = 3	
Dividing up to four digits by a single digit	Explore grouping using place value equipment.	Use place value equipment on a place value grid alongside short division. The model uses grouping.	Use short division for up to 4-digit numbers divided by a single digit.
using short division	268 ÷ 2 = ?	A sharing model can also be used, although the model would need adapting.	0 5 5 6 7 3 ³ 8 ³ 9 ⁴ 2
	There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones.	T O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$3,892 \div 7 = 556$
	264 ÷ 2 = 134	4 4 8 T O	Use multiplication to check. $556 \times 7 = ?$
		4 4 8 T O	$6 \times 7 = 42$ $50 \times 7 = 350$ $500 \times 7 = 3500$
		Lay out the problem as a short division.	3,500 + 350 + 42 = 3,892


		There is 1 group of 4 in 4 tens. There are 2 groups of 4 in 8 ones. Work with divisions that require exchange. First, lay out the problem. How many groups of 4 go into 9 tens? 2 groups of 4 tens with 1 ten left over. Exchange the 1 ten left over for 10 ones. We now have 12 ones. How many groups of 4 go into 12 ones? 3 groups of 4 ones.	
Understanding remainders	Understand remainders using concrete versions of a problem. 80 cakes divided into trays of 6. 80 cakes in total. They make 13 groups of 6, with 2 remaining.	Use short division and understand remainders as the last remaining 1s. T	In problem solving contexts, represent divisions including remainders with a bar model. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$


Dividing decimals by 10, 100 and 1,000	Understand division by 10 using exchange. 2 ones are 20 tenths. 20 tenths divided by 10 is 2 tenths.	Represent division using exchange on a place value grid. The Heth Company of the Heth	Understand the movement of digits on a place value grid. O Tth Hth Thth O 8 5 $0.85 \div 10 = 0.085$ $0.85 \div 100 = 0.085$
Understanding the relationship between fractions and division	Use sharing to explore the link between fractions and division. 1 whole shared between 3 people. Each person receives one-third.	Use a bar model and other fraction representations to show the link between fractions and division.	Use the link between division and fractions to calculate divisions. $5 \div 4 = \frac{5}{4} = 1\frac{1}{4}$ $11 \div 4 = \frac{11}{4} = 2\frac{3}{4}$

		$I \div 3 = \frac{1}{3}$	
		Year 6	
	Concrete	Pictorial	Abstract
Year 6 Addition			
Comparing and selecting efficient methods	Represent 7-digit numbers on a place value grid and use this to support thinking and mental methods.	Discuss similarities and differences between methods, and choose efficient methods based on the specific calculation. Compare written and mental methods alongside place value representations.	Use column addition where mental methods are not efficient. Recognise common errors with column addition. $32,145+4,302=?$ $\frac{\text{TTh Th H T O}}{3\ 2\ 1\ 4\ 5} + \frac{4\ 3\ 0\ 2}{3\ 6\ 4\ 4\ 7} + \frac{4\ 3\ 0\ 2}{7\ 5\ 1\ 6\ 5}$ $Which method has been completed accurately?$
		Use bar model and number line representations to model addition in problem-solving and measure contexts. +I hour +8 minutes	What mistake has been made? Column methods are also used for decimal additions where mental methods are not efficient.

Selecting mental methods for larger numbers where appropriate Represent 7-digit numbers on a place value grid and use this to support thinking and mental methods.

$$2,411,301 + 500,000 = ?$$

This would be 5 more counters in the HTh place.

So, the total is 2,911,301.

$$2,411,301 + 500,000 = 2,911,301$$

Use a bar model to support thinking in addition problems.

I added 100 thousands then subtracted 1 thousand.

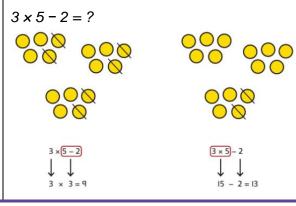
257 thousands + 100 thousands = 357 thousands

$$257,000 + 100,000 = 357,000$$

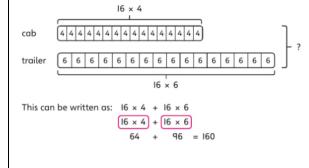
 $357,000 - 1,000 = 356,000$

Use place value and unitising to support mental calculations with larger numbers.

$$195,000 + 6,000 = ?$$


$$195 + 5 + 1 = 201$$

195 thousands + 6 thousands = 201 thousands


So,
$$195,000 + 6,000 = 201,000$$

Understanding order of operations in calculations

Use equipment to model different interpretations of a calculation with more than one operation. Explore different results.

Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations.

Understand the correct order of operations in calculations without brackets.

Understand how brackets affect the order of operations in a calculation.

$$4 + 6 \times 16$$

 $4 + 96 = 100$

$$(4+6) \times 16$$

10 × 16 = 160

Year 6 Subtraction			
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers. The Head of the second sec	Compare subtraction methods alongside place value representations. 2.679 Th H T O 2 6 7 9 - 5 3 4 2 1 4 5 Use a bar model to represent calculations, including 'find the difference' with two bars as comparison. computer game puzzle book £12-50	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy. The Heat Toldon Strate

Subtracting mentally with larger numbers		Use a bar model to show how unitising can support mental calculations. 950,000 - 150,000 That is 950 thousands - 150 thousands 950 So, the difference is 800 thousands. 950,000 - 150,000 = 800,000	Subtract efficiently from powers of 10. 10,000 - 500 = ?
Year 6 Multiplication			
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications. Th T O O O O O O O O O O O O O O O O O O	Use place value equipment to compare methods. Method I	Understand area model and short multiplication. Compare and select appropriate methods for specific multiplications. Method 3 3,000 200 20 5 4 12,000 800 80 20 12,000 + 800 + 80 + 20 = 12,900 Method 4 12,000 800 80 20 1 2 9 0 0
Multiplying up to a 4-digit		Use an area model alongside written multiplication.	Use compact column multiplication with understanding of place value at all stages.

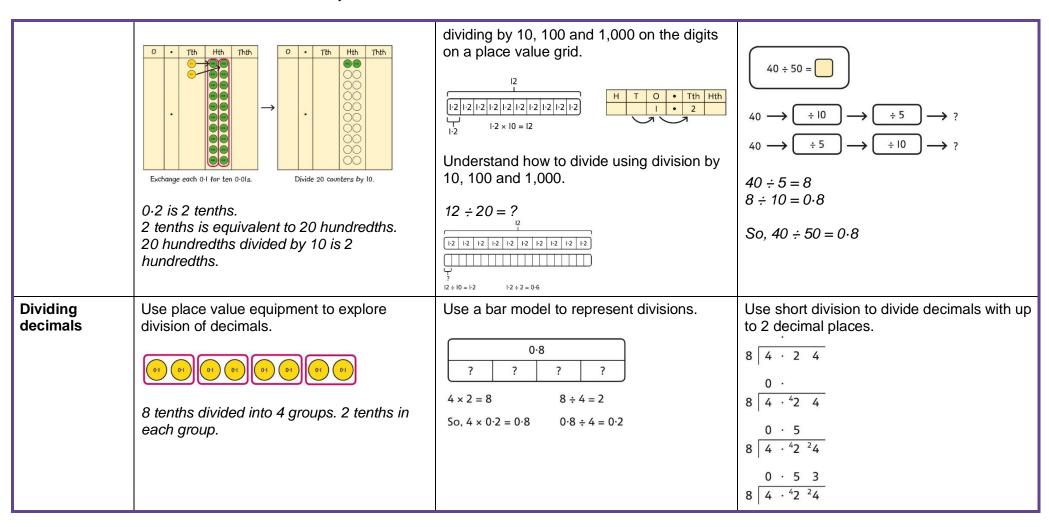
number by a 2-digit number											ſ				2	3	5		
2 digit flumber			20	0	30		5				ı		×			2	Т		
		20	4,00	00	600		100				H	\rightarrow	-	\rightarrow	2	3	5	1 225	
		- 1	20	0	30	Т	5				ŀ	-	\rightarrow		_		-	I × 235	
			4,20	00 +	630	+	105	= 4,935			ŀ	_	_	4	7,	0	0	20 × 235	
				2	3	5]							4	q	3	5	21 × 235	
			×		2	-	1												
					\top	5	I×5	;											
					3	0	I × 3	0											
			Ш	2	+	-	I×2												
				- 1	+	-	20 ×												
			+	6	-	-	20 ×												
			\vdash	4 9	-	-	20 ×												
			\vdash	4 9	3)	21 × .	233											
		L					J												
Using knowledge of	Use equipment to understand square numbers and cube numbers.							ally usin		rea			a kno ed fa		fact	t to g	gene	rate families	of
factors and	numbers and cube numbers.							multiple the sa		swer if	16	eiaie	eu ia	CIS.					
partitions to				ted a							(170	II)					
compare			5.20	0				5.000	200			170	×"					171 × 11	
methods for multiplications		20	5,200 > 5,200	20	>	~	25	5,000 × 25					1	1			~		
maniphodilono			3,200		5,2	200 × 2	5)_	ノ							1,870	÷ 11 = 17	0		
	00000000		5,00	. (7	\	5,200					~					7	
		20	5,000 ×	20 20	200 0 × 20			5,200 × 25				170	× 12					17 × 110	
	$5 \times 5 = 5^2 = 25$	5	5,000	x 5 2	00 × 5	_/	>)					
	$5 \times 5 \times 5 = 5^3 = 25 \times 5 = 125$	5	5,200	× 5	/		100				U	se f	acto	rs to	o ca	Icula	ite e	fficiently.	
		5 5	5,200 5,200	× 5								41	= .,	16					
		5 5	5,200 5,200								=		5 x						

		Represent and compare methods using a bar model.	= 3 × 8 × 2 × 5 = 24 × 10 = 240
Multiplying by 10, 100 and 1,000	Use place value equipment to explore exchange in decimal multiplication.	Understand how the exchange affects decimal numbers on a place value grid.	Use knowledge of multiplying by 10, 100 and 1,000 to multiply by multiples of 10, 100 and 1,000.
	Represent 0·3. Multiply by I0. Exchange each group of ten tenths.		$8 \times 100 = 800$ $8 \times 300 = 800 \times 3$ $= 2,400$ $2.5 \times 10 = 25$ $2.5 \times 20 = 2.5 \times 10 \times 2$ $= 50$
	$0.3 \times 10 = ?$ 0.3 is 3 tenths. 10×3 tenths are 30 tenths. 30 tenths are equivalent to 3 ones.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Multiplying decimals	Explore decimal multiplications using place value equipment and in the context of measures.	Represent calculations on a place value grid. $3 \times 3 = 9$ $3 \times 0.3 = 0.9$	Use known facts to multiply decimals. $4 \times 3 = 12$ $4 \times 0.3 = 1.2$ $4 \times 0.03 = 0.12$
	3 groups of 4 tenths is 12 tenths. 4 groups of 3 tenths is 12 tenths.	T O • Tth 01 01 01 01 02 01 02 03 01 02 04 01 02 05	$20 \times 5 = 100$ $20 \times 0.5 = 10$ $20 \times 0.05 = 1$ Find families of facts from a known multiplication.
	(→ (→ (→ (→ (→ (→ (→ (→ (→ (→ (→ (→ (→ (Understand the link between multiplying decimals and repeated addition.	I know that $18 \times 4 = 72$. This can help me work out:

	$4 \times 1 \text{ cm} = 4 \text{ cm}$ $4 \times 0.3 \text{ cm} = 1.2 \text{ cm}$ $4 \times 1.3 = 4 + 1.2 = 5.2 \text{ cm}$	T 0 • Tth • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$1.8 \times 4 = ?$ $18 \times 0.4 = ?$ $180 \times 0.4 = ?$ $18 \times 0.04 = ?$ Use a place value grid to understand the effects of multiplying decimals.
			H T O • Tth Hth
			2 × 3 6 •
			0·2 × 3 0 • 6
			0·02 × 3
Year 6 Division			
Understanding factors	Use equipment to explore different factors of a number.	Recognise prime numbers as numbers having exactly two factors. Understand the link with division and remainders.	Recognise and know primes up to 100. Understand that 2 is the only even prime, and that 1 is not a prime number.
	24 ÷ 4 = 6	17 ÷ 2 = 8 r l	I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

	$30 \div 4 = 7$ remainder 2 4 is a factor of 24 but is not a factor of 30.		
Dividing by a single digit	Use equipment to make groups from a total. There are 78 in total. There are 6 groups of 13. There are 13 groups of 6.	H T O G 6 are in I humany groups of 6 are in I stens? H T O How many groups of 6 are in I stens? H T O How many groups of 6 are in I stens? H T O How many groups of 6 are in I stens?	Use short division to divide by a single digit. 0

			? 10 10 1 1 6 132 6 60 60 6 6
			6 × ? = 32 20 2 6 120 12 132 = 20 + 2
Dividing by a 2-digit number using factors	Understand that division by factors can be used when dividing by a number that is not prime.	Use factors and repeated division. 1,260 \div 14 = ? 1,260 \div 1 = 630 630 \div 7 = 90 1,260 \div 14 = 90	Use factors and repeated division where appropriate. 2,100 \div 12 = ? 2,100 \rightarrow $\begin{pmatrix} \div 2 \\ \end{pmatrix}$ \rightarrow $\begin{pmatrix} \div 6 \\ \end{pmatrix}$ \rightarrow 2,100 \rightarrow $\begin{pmatrix} \div 6 \\ \end{pmatrix}$ \rightarrow $\begin{pmatrix} \div 2 \\ \end{pmatrix}$ \rightarrow 2,100 \rightarrow $\begin{pmatrix} \div 3 \\ \end{pmatrix}$ \rightarrow $\begin{pmatrix} \div 4 \\ \end{pmatrix}$ \rightarrow 2,100 \rightarrow $\begin{pmatrix} \div 4 \\ \end{pmatrix}$ \rightarrow $\begin{pmatrix} \div 3 \\ \end{pmatrix}$ \rightarrow $\begin{pmatrix} \div 2 \\ \end{pmatrix}$ \rightarrow 2,100 \rightarrow $\begin{pmatrix} \div 4 \\ \end{pmatrix}$ \rightarrow $\begin{pmatrix} \div 3 \\ \end{pmatrix}$ \rightarrow $\begin{pmatrix} \div 2 \\ \end{pmatrix}$ \rightarrow
Dividing by a 2-digit number using long division	Use equipment to build numbers from groups. 182 divided into groups of 13. There are 14 groups.	Use an area model alongside written division to model the process. $377 \div 13 = ?$	Use long division where factors are not useful (for example, when dividing by a 2-digit prime number). Write the required multiples to support the division process. $377 \div 13 = ?$ $0 \times 13 \times 12 \times 13 \times 13 \times 13 \times 13 \times 13 \times 13$


Power Maths White Rose Edition Calculation Policy

	I		
		377 ÷ 13 = 29	2 9
			13 3 7 7
			- 1 3 0 10
			2 4 7
			- 1 3 0 10
			1 7 7
			0
			377 ÷ 13 = 29
			A slightly different layout may be used, with the division completed above rather than at
			the side.
			3
			21 7 9 8
			- <u>6 3 0</u> 1 6 8
			3 8 21 7 9 8
			$-\frac{6\ 3\ 0}{1\ 6\ 8}$
			<u> 1 6 8</u>
			0
			Divisions with a remainder explored in
Distribute 1 40	Haranta a salar a salar	Department districts to the state of the sta	problem-solving contexts.
Dividing by 10, 100 and 1,000	Use place value equipment to explore division as exchange.	Represent division to show the relationship with multiplication. Understand the effect of	Use knowledge of factors to divide by multiples of 10, 100 and 1,000.

Power Maths White Rose Edition Calculation Policy

